led - Massari Electronics

  • Led per citofoni e campanelli

    Quante volte vi è capitato di dover sostituire quella odiosa lampadina che illumina la targhetta del campanello o citofono perché fulminata?
    Ebbene se vi interessa porre una soluzione definitiva ed economica al problema ecco la soluzione!

    892

    La lampadina usata in moltissimi citofoni o campanelli è  detta "a siluro" ed ha la forma simile ad un fusibile. Essa viene spesso alimentata da un circuito che gli fornisce una tensione di 12-16V corrente alternata e consuma una potenza di circa 3W. Nei citofoni o campanelli essa rimane accesa 24/24 ore al giorno e quindi rappresenta un consumo considerevole alla fine dell'anno. Inoltre essendo una lampadina a filamento classica essa è soggetta alla rottura del filamento e il filamento stesso spreca molta dell'energia in calore invece che in luce.

    Da alcuni anni chi "bazzica" nel mondo dell'elettronica avrà sicuramente notato la crescente disponibilità a basso prezzo di led ad alta luminosità di tonalità bianco (freddo o caldo) che permettono di illuminare oggetti con una efficienza molto alta. Dunque perché non usarli nei citofoni al posto delle normali lampadine a siluro?
    Questo permette di ridurre i consumi, rendere la "lampadina" molto durevole (grazie alla longevità dei led) e di rendere più chiara la lettura dalla targhetta rispetto alle classiche e "cupe" lampadine a siluro.
    Per poter utilizzare un led al posto della lampadina a siluro è necessario adottare un circuito che effettui le seguenti operazioni:

    • Raddrizzi l'eventuale corrente alternata in ingresso con un diodo.
    • Livelli la tensione pulsante in uscita dal diodo per eliminare il fastidioso sfarfallio a 50Hz in uscita dal diodo attraverso un condensatore elettrolitico.
    • Limiti la corrente fornita al led attraverso una resistenza di opportuno valore ohmico e potenza supportata.

    Il circuito che ho realizzato (visibile sotto) effettua tutte queste operazioni e risulta molto semplice sia da dimensionare che da realizzare.


    Il circuito è stato progettato per funzionare con range di tensioni da circa 12V a oltre 16V corrente alternata o continua, consiglio comunque di adattare la potenza e il valore ohmico della resistenza alla tensione del vostro citofono.
    Il circuito è molto semplice, il diodo 1N4148 supporta correnti oltre i 150mA (più che sufficienti per i circa 30mA massimi necessari al led bianco) e tensioni inverse molto più alte di quella con cui è alimentato il circuito (per i dettagli vedere il datasheet).
    La capacità permette di livellare la tensione per evitare il fastidioso sfarfallio a 50Hz provocato dal raddrizzatore a diodo che provvede a far passare solo le semionde positive della corrente alternata. Può essere un qualsiasi elettrolitico da 22uF (potete prendere anche altri valori...).
    La resistenza va dimensionata considerando la tensione presente ai capi del condensatore (attenzione al valore massimo se in ingresso vi è una corrente alternata), la tensione di caduta del led (tipicamente di 3V per i led bianchi ad alta luminosità) e la corrente di lavoro del led (tipicamente PER I LED BIANCHI AD ALTA LUMINOSITA' pari a circa 30mA).
    Abbondate pure con il valore resistivo essendo necessaria non tutta la luminosità del led (a meno che non vogliate un citofono torcia!), pertanto scegliete pure un valore resistivo anche doppio (come in questo progetto).
    Fate attenzione alla dissipazione termica della resistenza, nel mio caso ho preferito l'uso di 2 resistenze in parallelo da 2200 ohm 1/4W, invece dell'unica resistenza a 1200 ohm 1/2W dividendo così la potenza dissipata.

    CONSIDERAZIONI SUL CONSUMO
    Una lampadina a siluro consuma tipicamente una potenza di circa 3W tutto il giorno (24/24h).
    Il circuito a led (considerando proprio il funzionamento del led alla massima potenza, condizione non necessaria per la lampadina a led del citofono) consuma una potenza di circa P = 15Volt * 30mA = 15*0,030 = 0,5W circa.
    Direi che i calcoli si commentano da soli...
    Inoltre il led ha una durata in anni molto maggiore della lampadina e consente di rendere il vostro citofono molto più luminoso (non esagerate!) rispetto al citofono del vicino (così potrete battere il vicino come luminosità del citofono, invece che cercare di rendere il vostro prato migliore!!!).

    REALIZZAZIONE
    Per quanto concerne la realizzazione del circuito io ho optato per la semplice basetta millefori, data la semplicità del circuito. Ovviamente cercate di rendere le dimensioni della basetta "compatibili" con quelle della lampadina a siluro del vostro citofono. Consiglio inoltre di mettere tutto il circuito dentro una guaina termo-restringente per evitare eventuali corti sulla scheda.

    Di seguito alcune immagini...

      

    BUON LAVORO!

  • Music light

    Ti interessa acquistare la versione aggiornata di MusicLight (ora SoundLight) già pronta all'uso? Clicca qui.

     Ecco qui presentato un mio nuovo progetto realizzato in seguito ad una richiesta di un mio amico. 

    Lui aveva bisogno di un circuito che facesse lampeggiare a ritmo di musica dei led o altri tipi di fonti luminose attraverso l’uscita audio del computer.
    Successivamente, vista la bontà del circuito, me ne sono costruito uno anche per me e me lo sono messo in camera a mo’ di discoteca!!!

    Ma partiamo subito con la descrizione del circuito:

    Componenti necessari:
    R1 470K
    R2 150K
    R3 100K
    R4 22K
    R5 4,7K
    R6 4,7K
    R7 1K
    R8 trimmer 4,7K
    R9 56K
    R10 1K

    R11 1K
    C1 47nF oppure come nel mio caso (4 * 10nF)
    C2 4,7uF
    C3 1uF
    C4 47uF
    C5 220uF
    TR1 BC547
    TR2 BC547
    TR3 BC547
    D1 1N5408 (a seconda del carico in uscita)
    Q1 Mosfet IRF540

    Il circuito è composto da un ingresso per l’alimentazione, uno per l’audio e da un uscita per collegare le lampadine o led da controllare.
    L’alimentazione necessaria al circuito (e disponibile in uscita) è di 12 volt, quindi è adattabile sia alle alimentazioni del Personal Computer, sia ad un alimentatore esterno.
    Lo schema può essere sostanzialmente diviso in 2 parti:
    La prima parte è formata da un amplificatore a BC547 (o equivalente) che amplifica il segnale proveniente dalla scheda audio pel PC (che solitamente arriva al massimo ad una tensione di 1 – 2 V picco-picco) ad un valore di tensione che può arrivare fino a 3-4 V picco picco.
    Nel dettaglio si può osservare che il segnale passa subito nel condensatore in poliestere C1 da 47nF (nello schema ce ne sono quattro in parallelo perché nel mio laboratorio avevo solo condensatori in poliestere da 10nF), questo condensatore serve a non far tornare indietro (verso il computer) la corrente continua che tiene polarizzato il transistor TR1, infatti dopo il condensatore avremo il segnale più la componente continua che mantiene i transistor polarizzati in zona attiva. TR1 amplifica il segnale che poi va alla base di TR2 dove viene ulteriormente amplificato.
    A questo punto C3 esegue il lavoro inverso di C1 permettendoci di riottenere il segnale amplificato senza la componente continua e senza sfasamenti nella sinusoide.

    Seconda parte del circuito
    Come si può notare il tutto parte da un potenziometro che permette di regolare la sensibilità del circuito, questo è utile soprattutto se lo collegherete a distanza dal PC o per avere la luminosità preferita.
    Quando nessun segnale è presente in ingesso e la tensione data dal potenziometro (quindi quella tra base ed emettitore di TR3) è maggiore di 0.7V il transistor forzerà a massa l’alimentazione dal gate del Mosfet di tipo N che risulta interdetto (ovvero luci collegate spente all’ uscita), in questo caso il circuito è a riposo.
    Quando dalla uscita audio del computer esce un segnale la prima parte del circuito lo amplifica e lo riporta amplificato su C3.
    Il potenziometro è collegato da un capo alla tensione positiva di alimentazione e dall’ altro alla massa permettendoci di selezionare una tensione che va da 12 volt (considerando il diodo D1 ideale) a 0 volt. Il cursore del potenziometro è collegato a R9 da 56Kohm che fa passare una debolissima corrente (dipendente dal potenziometro) che C3 va ad assorbire in presenza di segnale portando in interdizione TR3 che quindi non può più forzare a massa il gate del Mosfet di tipo N IRF540 (siglato Q1) che va in conduzione e fa accendere il carico collegato in uscita.
    Ovviamente essendo un segale audio il transistor TR3 non viene interdetto continuamente ma segue l’andamento della tensione del segnale e quindi della caria e scarica di C3 ed è proprio questo che ci da l’idea della luce a ritmo di musica. Infatti in alcuni instanti il mosfet sarà interdetto o in zona lineare o in saturazione a seconda di TR3 il cui funzionamento dipende dalla corrente assorbita da C3 tra R9 ed R10 e quindi dal suono amplificato.

    NELLA COSTRUZIONE "A MANO" NON FATE RIFERIMENTO ALLE IMMAGINI SOTTOSTANTI MA ALLO SCHEMA E AI FILE DI EAGLE PRESENTI SOTTO LE IMMAGINI!

    Qui vi sono i file per realizzare la scheda (richiede programma CAD Eagle)

    DOWNLOAD

     

    COLLEGAMENTO DEL DISPOSITIVO
    Ecco lo schema di collegamento del dispositivo con evidenziati i componenti di taratura e dissipazione.


    Per funzionare il circuito necessita di un alimentazione a 12Vdc, l'ingresso audio andrà collegato alla fonte audio attraverso un classico jack da 3,5mm collegando un solo canale (es. L) e la massa. secondo il seguente schema:

    In alternativa è possibile collegare entrambi i canali stereo al musiclight miscelando assieme l'audio dei due canali attraverso due resistenze da 1Kohm, come visibile nella fugura sotto. In questo modo l'audio verrà prelevato da entrambi i canali senza però porli in cortocircuito!


    Tutti i dispositivi di illuminazione (funzionanti a 12V ovviamente) andranno collegati in parallelo all'uscita carico.
    Una volta effettuato il collegamento del circuito sarà necessario tararlo: questa operazione è molto semplice. Per prima cosa regolare il volume della sorgente audio ai valori preferiti, immettere un suono possibilmente vario e regolare il trimmer fino ad ottenere la sensibilità preferita. Se il volume in uscita porta anche col trimmer al minimo una saturazione delle luci (sempre accese) essendo il segnale in ingresso troppo alto è necessario porre prima della fonte audio (tra il segnale + del connettore) un trimmer (o un potenziometro) lineare da 4,7K con ai capi il segnale audio e la massa (in comune e collegata al -), mentre al cursore l'ingresso del circuito music light. Come visibile nella figura sotto.


    DISPOSITIVI DI ILLUMINAZIONE
    Nella versione che mi sono messo in camera ho collegato una striscia di led commerciale a 3 colori ed una piccola basetta auto costruita con saldati 2 led ad alta luminosità da 1 W collegati in serie e con ovviamente la resistenza di limitazione.

    Realizzazione del faretto con led ad alta luminosità

    Lo schema come potete vedere è minimale e semplice da realizzare, è composto da 2 led ad alta luminosità da 1W. I led possono essere dei qualsiasi tipo, l’importante è sapere la corrente assorbita e la tensione di soglia.
    Nel mio caso avevo dei led con tensione di soglia di 3,4V e un assorbimento di 350mA. Considerando che io ho 2 led in serie avrò la stessa corrente e tensione di soglia uguale alla somma delle 2 tensioni di soglia.
    Quindi 6,8 V come tensione di soglia e 350mA di assorbimento, ora si può procedere ai calcoli con l’immortale legge di ohm:

    Dove :
    R è la resistenza incognita
    Vcc è la tensione di alimentazione (deve essere maggiore della tensione di soglia ovviamente!)
    Vled è la tensione di soglia
    NB: il risultato è stato arrotondato per eccesso al valore di resistenze standard E12 più vicino

    Dato che l’assorbimento è abbastanza alto andrà calcolata anche la potenza dissipata dalla resistenza secondo la formula:

    Dove:
    R è il valore della resistenza
    I è la corrente che gli scorrerà attraverso
    P è la potenza che dissiperà
    NB: il risultato è stato arrotondato per eccesso al valore di potenza standard delle resistenze.


    Attenzione: in questo caso, dato il basso assorbimento dei dispositivi di illuminazione utilizzati, non è necessario applicare un dissipatore al MOSFET. Nel caso, però, che colleghiate più led di elevata potenza o addirittura fari ad incandescenza potrebbe essere necessario applicare un dissipatore al MOSFET ed allargare le piste che portano le correnti del carico modificando lo stampato o stagnando le piste. Anche il diodo D1 interviene nell'assorbimento dei dispositivi di illuminazione, proteggendo sia il circuito che il dispositivo di illuminazione dalle inversioni di polarità, e pertanto andrà opportunamente dimensionato (quello usato nel progetto accetta al massimo 6A). A vostro rischio e pericolo può essere anche omesso.

    Il MOSFET opportunamente dissipato può supportare una corrente massima continua di 16A (veramente tanti!).

     

    VIDEO

                                                     
       


    Buon lavoro!

  • Riparazione retroilluminazione LCD

    ATTENZIONE: Alcuni dispositivi descritti in questo articolo possono presentare ALTE TENSIONI che possono rivelarsi anche MORTALI se non si opera in modo opportuno. L'autore non si assume alcuna responsabilità per danni a cose o a persone!

     

    Con questo articolo voglio presentarvi una soluzione ad uno dei problemi più comuni degli schermi lcd: la retroilluminazione non funzionante. Il sintomo di questo problema è facilmente riscontrabile, infatti il display continua a funzionare normalmente con la propria spia luminosa ma dallo schermo non si vede nulla o si intravedono controluce le immagini. Se il vostro schermo presenta questi problemi la soluzione è proprio la riparazione della retroilluminazione!

    LA RETROILLUMINAZIONE DI UN DISPLAY LCD

    Il presente articolo tratta la riparazione di uno schermo lcd avente una retroilluminazione a lampade fluorescenti di tipo CCFL (Cold Cathode Fluorescent Lamps). Negli schermi lcd queste lampade sono poste nel retro dello schermo e creano la luce necessaria per rendere visibili le immagini sul pannello a cristalli liquidi. Le lampade possono essere 1, 2 o più a seconda delle dimensioni nel display e sono disposte ai lati dello schermo (generalmente una nel lato superiore e una nel lato inferiore) e la luce viene diffusa da uno speciale strato a specchio che consente di diffondere la luce su tutto lo schermo in maniera uguale e senza zone d'ombra.


    Qui sotto sono visibili 2 coppie di lampade per lato (superiore e inferiore) prese da un monitor avente 17 pollici


    L'alimentazione delle lampade CCFL viene generata da un particolare dispositivo chiamato INVERTER. Il suo scopo è quello di generare l'alta tensione necessaria ad accendere e mantenere accese le lampade CCFL, regolare la luminosità delle lampade (e quindi dello schermo) e spegnere le lampade quando il display va in standby. Nell' immagine sottostante è visibile un generico inverter.

    Solitamente l'inverter presenta un connettore di ingresso e 2 o più di uscita generalmente posti ai lati. Quello di ingresso fornisce all'inverter l'alimentazione (a 5V e/o 12V a seconda dei modelli) un segnale di abilitazione (che controlla lo standby) e un segnale di controllo della luminosità della retroilluminazione. Le uscite, invece, portano l'alta tensione generata alle lampade (generalmente 2 conduttori a lampada o 2 conduttori e una massa in comune).

     

    RICERCA DEL MALFUNZIONAMENTO

    Le cause di malfunzionamento della retroilluminazione di un pannello lcd possono essere riconducibili a 2 motivazioni:

    • Rottura o esaurimento del gas delle lampade CCFL;
    • Malfunzionamento o rottura della scheda di alimentazione delle lampade.

    La prima causa può essere verificando testando l'effettivo funzionamento delle lampade attraverso l'adozione di una diversa scheda di alimentazione o di un generatore per alte tensioni, o più banalmente attraverso l'osservazione della lampada, infatti se presenta le estremità annerite può significare una rottura del tubo.Nel caso in cui le lampade siano funzionanti (o almeno sembrino) allora con molta probabilità la causa è la scheda di alimentazione delle lampade.

    ORIENTARSI TRA I COMPONENTI DI IN UN PANNELLO LCD

    I componenti principali di un display LCD sono sostanzialmente 4:

    • L'alimentatore che fornisce le tensioni continue e stabilizzate per i vari componenti (generalmente 3,3V, 5V e 12V);
    • Una scheda di controllo che permette l'elaborazione dell'immagine ed eventuali conversioni di segnale con lo scopo finale di inviare i giusti segnali ad una scheda inserita nel pannello LCD;
    • L'INVERTER che controlla le lampade di retroilluminazione CCFL;
    • Il pannello LCD vero e proprio che contiene tutta la parte relativa alla creazione delle immagini, le lampade di retroilluminazione e una scheda che controlla pixel per pixel il pannello LCD (comandata dalla scheda di controllo dell'LCD)

    Nella figura sottostante sono mostrate le varie parti disposte nel retro del display

    in fase di scrittura la continuazione....

  • Semaforo a relè

    Vi presento uno dei miei primi circuiti. 
    Si tratta del solito semaforo, ma questo non usa un integrato o un microcontrollore : usa dei relè! 
    Questo progetto è utile per chi inizia a fare i primi circuiti elettronici o a chi vuole qualcosa di originale da fare. 
    Il circuito si basa sul tempo di scarica dei vari condensatori che pilotano dei transistor che, a loro volta, azionano i relè. 
    Combinando in modo logico questi eventi è possibile ottenere l’esatta logica del semaforo. L’alimentazione è a 12volt e il consumo è minore di 500mA (dipende dai relè). La mia realizzazione è composta da 2 circuiti separati: quello logico e quello di visualizzazione, i led possono essere sostituiti con qualunque sistema di visualizzazione (più led, lampadine ecc) .

    Di seguito vi allego lo schema, la lista dei componenti, i master e la mia realizzazione.


    Lista componenti: 
    R1,R2=680 OHM 
    R3,R4,R5= 47KOHM 
    D1=1N4007 
    D2,D3,D4=1N4151 
    TR1,TR2,TR3=BC547 
    LED1=ROSSO 
    LED2=GIALLO 
    LED=VERDE 
    Tutti elettrolitici 
    C1,C3,C4=470uF 
    C2=47uF
    relè= qualsiasi tipo di relè 12v con con contatti NA e NC (Finder mod.4052)
    il circuito stampato, diversamente dallo schema, fornisce in uscita i 12 volt per i segnali dei led senza alcuna resistenza o led per dar la possibilità di poter scegliere il metodo di visualizzazione preferito. (un mio esempio in basso)

    File master per fare lo stampato: SCARICA FILE MASTER(per cad Eagle http://www.cadsoft.de/ )

    immagine disposizione componentischeda logica

    NB: le parti blu sono le piste sotto e le parti rosse sono dei ponticelli che andranno fatti con dei comuni fili elettrici, meglio se rigidi, di piccola sezione.

     

    IL MIO METODO DI VISUALIZZAZIONE

    Per rendere più gradevole la visualizzazione ho creato questa piccola scheda di visualizzazione con 4 led per colore (le resistenze R1 R2 R3 sono da 330 ohm)

     

    PROGETTO FINITO

     

    VIDEO PROGETTO

    Buon lavoro!