elettronico - Massari Electronics

  • Amplificatore video composito

     

    Questo circuito può essere utile a tutti coloro che hanno bisogno di trasportare a distanze considerevoli un segnale video composito proveniente da una qualsiasi fonte di segnale video composito(come ad esempio una telecamera di videosorveglianza analogica). Il circuito è molto semplice e si basa su un amplificatore operazionale della National Semiconductor siglato LM6181. Le sue principali caratteristiche sono:

    • Banda passante di 100Mhz
    • Slew rate di 2000V/µs
    • Adatto all'amplificazione di segnali video
    • Alimentazione duale fino a 18V

    Nella figura sottostante è visibile lo schema elettrico dell'amplificatore video


    Come potete notare dallo schema si tratta di un amplificatore operazione in configurazione non invertente, sia in ingresso che in uscita sono presenti due resistenze da 150 ohm che fanno da resistenze di terminazione per mantenere costante l'impedenza dei cavi coassiali di ingresso e uscita del segnale. Infatti i cavi coassiali video solitamente hanno un'impedenza di 75 ohm (ed essendo 75 ohm un valore resistivo non della serie E12, il valore viene creato dalle due resistenze da 150 ohm in parallelo). Con il trimmer è possibile regolare il guadagno dell'amplificatore da 1,1 fino a circa 6,6. Per alimentare l'amplificatore operazione è necessario utilizzare un alimentatore di tipo duale da 12V (comunque l'integrato sostiene fino a 18V duali).

    Il circuito va inserito tra la fonte video (segnale ingresso) e il ricevitore (da collegare all'uscita del circuito), per una migliore efficacia del circuito è necessario interporre l'amplificatore al circuito video composito esistente in un punto vicino alla fonte video, per non amplificare oltre al segnale utile anche il rumore presente lungo il tratto della linea.

    CIRCUITO STAMPATO

    Attenzione l'immagine non è in dimensioni reali: per lo stampato fate riferimento al file di fidocad.

    Qui di seguito potete scaricare il file di fidocad in cui è presente lo schema e il circuito stampato pronto da realizzare.

    SCHEMA E CIRCUITO STAMPATO PER FIDOCAD

  • Music light

    Ti interessa acquistare la versione aggiornata di MusicLight (ora SoundLight) già pronta all'uso? Clicca qui.

     Ecco qui presentato un mio nuovo progetto realizzato in seguito ad una richiesta di un mio amico. 

    Lui aveva bisogno di un circuito che facesse lampeggiare a ritmo di musica dei led o altri tipi di fonti luminose attraverso l’uscita audio del computer.
    Successivamente, vista la bontà del circuito, me ne sono costruito uno anche per me e me lo sono messo in camera a mo’ di discoteca!!!

    Ma partiamo subito con la descrizione del circuito:

    Componenti necessari:
    R1 470K
    R2 150K
    R3 100K
    R4 22K
    R5 4,7K
    R6 4,7K
    R7 1K
    R8 trimmer 4,7K
    R9 56K
    R10 1K

    R11 1K
    C1 47nF oppure come nel mio caso (4 * 10nF)
    C2 4,7uF
    C3 1uF
    C4 47uF
    C5 220uF
    TR1 BC547
    TR2 BC547
    TR3 BC547
    D1 1N5408 (a seconda del carico in uscita)
    Q1 Mosfet IRF540

    Il circuito è composto da un ingresso per l’alimentazione, uno per l’audio e da un uscita per collegare le lampadine o led da controllare.
    L’alimentazione necessaria al circuito (e disponibile in uscita) è di 12 volt, quindi è adattabile sia alle alimentazioni del Personal Computer, sia ad un alimentatore esterno.
    Lo schema può essere sostanzialmente diviso in 2 parti:
    La prima parte è formata da un amplificatore a BC547 (o equivalente) che amplifica il segnale proveniente dalla scheda audio pel PC (che solitamente arriva al massimo ad una tensione di 1 – 2 V picco-picco) ad un valore di tensione che può arrivare fino a 3-4 V picco picco.
    Nel dettaglio si può osservare che il segnale passa subito nel condensatore in poliestere C1 da 47nF (nello schema ce ne sono quattro in parallelo perché nel mio laboratorio avevo solo condensatori in poliestere da 10nF), questo condensatore serve a non far tornare indietro (verso il computer) la corrente continua che tiene polarizzato il transistor TR1, infatti dopo il condensatore avremo il segnale più la componente continua che mantiene i transistor polarizzati in zona attiva. TR1 amplifica il segnale che poi va alla base di TR2 dove viene ulteriormente amplificato.
    A questo punto C3 esegue il lavoro inverso di C1 permettendoci di riottenere il segnale amplificato senza la componente continua e senza sfasamenti nella sinusoide.

    Seconda parte del circuito
    Come si può notare il tutto parte da un potenziometro che permette di regolare la sensibilità del circuito, questo è utile soprattutto se lo collegherete a distanza dal PC o per avere la luminosità preferita.
    Quando nessun segnale è presente in ingesso e la tensione data dal potenziometro (quindi quella tra base ed emettitore di TR3) è maggiore di 0.7V il transistor forzerà a massa l’alimentazione dal gate del Mosfet di tipo N che risulta interdetto (ovvero luci collegate spente all’ uscita), in questo caso il circuito è a riposo.
    Quando dalla uscita audio del computer esce un segnale la prima parte del circuito lo amplifica e lo riporta amplificato su C3.
    Il potenziometro è collegato da un capo alla tensione positiva di alimentazione e dall’ altro alla massa permettendoci di selezionare una tensione che va da 12 volt (considerando il diodo D1 ideale) a 0 volt. Il cursore del potenziometro è collegato a R9 da 56Kohm che fa passare una debolissima corrente (dipendente dal potenziometro) che C3 va ad assorbire in presenza di segnale portando in interdizione TR3 che quindi non può più forzare a massa il gate del Mosfet di tipo N IRF540 (siglato Q1) che va in conduzione e fa accendere il carico collegato in uscita.
    Ovviamente essendo un segale audio il transistor TR3 non viene interdetto continuamente ma segue l’andamento della tensione del segnale e quindi della caria e scarica di C3 ed è proprio questo che ci da l’idea della luce a ritmo di musica. Infatti in alcuni instanti il mosfet sarà interdetto o in zona lineare o in saturazione a seconda di TR3 il cui funzionamento dipende dalla corrente assorbita da C3 tra R9 ed R10 e quindi dal suono amplificato.

    NELLA COSTRUZIONE "A MANO" NON FATE RIFERIMENTO ALLE IMMAGINI SOTTOSTANTI MA ALLO SCHEMA E AI FILE DI EAGLE PRESENTI SOTTO LE IMMAGINI!

    Qui vi sono i file per realizzare la scheda (richiede programma CAD Eagle)

    DOWNLOAD

     

    COLLEGAMENTO DEL DISPOSITIVO
    Ecco lo schema di collegamento del dispositivo con evidenziati i componenti di taratura e dissipazione.


    Per funzionare il circuito necessita di un alimentazione a 12Vdc, l'ingresso audio andrà collegato alla fonte audio attraverso un classico jack da 3,5mm collegando un solo canale (es. L) e la massa. secondo il seguente schema:

    In alternativa è possibile collegare entrambi i canali stereo al musiclight miscelando assieme l'audio dei due canali attraverso due resistenze da 1Kohm, come visibile nella fugura sotto. In questo modo l'audio verrà prelevato da entrambi i canali senza però porli in cortocircuito!


    Tutti i dispositivi di illuminazione (funzionanti a 12V ovviamente) andranno collegati in parallelo all'uscita carico.
    Una volta effettuato il collegamento del circuito sarà necessario tararlo: questa operazione è molto semplice. Per prima cosa regolare il volume della sorgente audio ai valori preferiti, immettere un suono possibilmente vario e regolare il trimmer fino ad ottenere la sensibilità preferita. Se il volume in uscita porta anche col trimmer al minimo una saturazione delle luci (sempre accese) essendo il segnale in ingresso troppo alto è necessario porre prima della fonte audio (tra il segnale + del connettore) un trimmer (o un potenziometro) lineare da 4,7K con ai capi il segnale audio e la massa (in comune e collegata al -), mentre al cursore l'ingresso del circuito music light. Come visibile nella figura sotto.


    DISPOSITIVI DI ILLUMINAZIONE
    Nella versione che mi sono messo in camera ho collegato una striscia di led commerciale a 3 colori ed una piccola basetta auto costruita con saldati 2 led ad alta luminosità da 1 W collegati in serie e con ovviamente la resistenza di limitazione.

    Realizzazione del faretto con led ad alta luminosità

    Lo schema come potete vedere è minimale e semplice da realizzare, è composto da 2 led ad alta luminosità da 1W. I led possono essere dei qualsiasi tipo, l’importante è sapere la corrente assorbita e la tensione di soglia.
    Nel mio caso avevo dei led con tensione di soglia di 3,4V e un assorbimento di 350mA. Considerando che io ho 2 led in serie avrò la stessa corrente e tensione di soglia uguale alla somma delle 2 tensioni di soglia.
    Quindi 6,8 V come tensione di soglia e 350mA di assorbimento, ora si può procedere ai calcoli con l’immortale legge di ohm:

    Dove :
    R è la resistenza incognita
    Vcc è la tensione di alimentazione (deve essere maggiore della tensione di soglia ovviamente!)
    Vled è la tensione di soglia
    NB: il risultato è stato arrotondato per eccesso al valore di resistenze standard E12 più vicino

    Dato che l’assorbimento è abbastanza alto andrà calcolata anche la potenza dissipata dalla resistenza secondo la formula:

    Dove:
    R è il valore della resistenza
    I è la corrente che gli scorrerà attraverso
    P è la potenza che dissiperà
    NB: il risultato è stato arrotondato per eccesso al valore di potenza standard delle resistenze.


    Attenzione: in questo caso, dato il basso assorbimento dei dispositivi di illuminazione utilizzati, non è necessario applicare un dissipatore al MOSFET. Nel caso, però, che colleghiate più led di elevata potenza o addirittura fari ad incandescenza potrebbe essere necessario applicare un dissipatore al MOSFET ed allargare le piste che portano le correnti del carico modificando lo stampato o stagnando le piste. Anche il diodo D1 interviene nell'assorbimento dei dispositivi di illuminazione, proteggendo sia il circuito che il dispositivo di illuminazione dalle inversioni di polarità, e pertanto andrà opportunamente dimensionato (quello usato nel progetto accetta al massimo 6A). A vostro rischio e pericolo può essere anche omesso.

    Il MOSFET opportunamente dissipato può supportare una corrente massima continua di 16A (veramente tanti!).

     

    VIDEO

                                                     
       


    Buon lavoro!

  • Semaforo a relè

    Vi presento uno dei miei primi circuiti. 
    Si tratta del solito semaforo, ma questo non usa un integrato o un microcontrollore : usa dei relè! 
    Questo progetto è utile per chi inizia a fare i primi circuiti elettronici o a chi vuole qualcosa di originale da fare. 
    Il circuito si basa sul tempo di scarica dei vari condensatori che pilotano dei transistor che, a loro volta, azionano i relè. 
    Combinando in modo logico questi eventi è possibile ottenere l’esatta logica del semaforo. L’alimentazione è a 12volt e il consumo è minore di 500mA (dipende dai relè). La mia realizzazione è composta da 2 circuiti separati: quello logico e quello di visualizzazione, i led possono essere sostituiti con qualunque sistema di visualizzazione (più led, lampadine ecc) .

    Di seguito vi allego lo schema, la lista dei componenti, i master e la mia realizzazione.


    Lista componenti: 
    R1,R2=680 OHM 
    R3,R4,R5= 47KOHM 
    D1=1N4007 
    D2,D3,D4=1N4151 
    TR1,TR2,TR3=BC547 
    LED1=ROSSO 
    LED2=GIALLO 
    LED=VERDE 
    Tutti elettrolitici 
    C1,C3,C4=470uF 
    C2=47uF
    relè= qualsiasi tipo di relè 12v con con contatti NA e NC (Finder mod.4052)
    il circuito stampato, diversamente dallo schema, fornisce in uscita i 12 volt per i segnali dei led senza alcuna resistenza o led per dar la possibilità di poter scegliere il metodo di visualizzazione preferito. (un mio esempio in basso)

    File master per fare lo stampato: SCARICA FILE MASTER(per cad Eagle http://www.cadsoft.de/ )

    immagine disposizione componentischeda logica

    NB: le parti blu sono le piste sotto e le parti rosse sono dei ponticelli che andranno fatti con dei comuni fili elettrici, meglio se rigidi, di piccola sezione.

     

    IL MIO METODO DI VISUALIZZAZIONE

    Per rendere più gradevole la visualizzazione ho creato questa piccola scheda di visualizzazione con 4 led per colore (le resistenze R1 R2 R3 sono da 330 ohm)

     

    PROGETTO FINITO

     

    VIDEO PROGETTO

    Buon lavoro!

  • Termostato elettronico

    Il termostato è un dispositivo presente sotto più aspetti nelle nostre case, pensate solo al forno o al frigorifero. Il suo funzionamento è molto semplice: cambiare lo stato di una uscita quando la temperatura dell'ambiente o di una superficie supera o ritorna sotto una certa soglia solitamente impostabile. Spesso i termostati semplici (non i cronotermostati) sono realizzati sfruttando parti meccaniche che attraverso vari fenomeni fisici permettono la commutazione di un contatto elettrico. Questo termostato, invece, sfrutta componenti elettronici per rilevare la temperatura attraverso un sensore mentre lo stato di uscita del termostato è gestito da un comparatore.

    In questo articolo sono presentate due versioni di termostato elettronico: una con e una senza relè. La prima versione è quella con relè.

    VERSIONE CON RELE'

    SCHEMA ELETTRICO

    Osservando lo schema è possibile notare il modulo che provvede ad alimentare il termostato costituito dal classico stabilizzatore 7812 che fornisce al circuito una tensione di 12V stabilizzata partendo dai 15VDC in ingresso (o tensione superiore nei limiti del 7812). Il termostato è poi costituito da un partitore avente una resistenza fissa da 4,7Kohm e una termistore NTC da 4,7Kohm. Il termistore NTC è una particolare resistenza costituita da materiale semiconduttore che ha la particolarità di diminuire la propria resistenza all'aumentare della temperatura (al contrario delle normali resistenze o termoresistenze che, invece, aumentano la propria resistenza all'aumentare della temperatura). Altro particolare differente rispetto alla classiche resistenze è che le NTC non hanno un andamento della propria curva caratteristica lineare ma esponenziale: questo particolare per un termostato, al contrario di un termometro, è relativo visto che basta adattare opportunamente l'eventuale scala del cursore di selezione della temperatura d'intervento. La tensione uscente dal partitore contenente la sonda NTC rappresenta la temperatura convertita in una tensione elettrica infatti a 25°C (il valore di resistenza dell'NTC è riferito solitamente a questa temperatura) si avrà in uscita la metà della tensione di alimentazione del partitore (6V) avendo le due resistenze lo stesso valore in ohm. Se la temperatura sale oltre i 25°C la tensione in uscita dal partitore diminuirà poiché la resistenza NTC presenterà un valore in ohm minore rispetto all'altra resistenza da 4,7Kohm e pertanto la tensione cadrà più sulla resistenza fissa che sulla NTC, al contrario se la temperatura scende la tensione in uscita dal partitore aumenterà essendo il valore in ohm dell'NTC maggiore dell'altra resistenza fissa e pertanto sulla resistenza NTC si avrà una maggiore caduta di tensione. Questo vi permette anche di utilizzare una NTC diversa da 4,7K ohm tanto per mantenere questo funzionamento è sufficiente che le due resistenze del partitore siano uguali, mentre utilizzando valori diversi potrete anche avere vari range di misurazione utilizzando la formula caratteristica dell'NTC o la sperimentazione.


    L'altro partitore permette di selezionare attraverso un trimmer la temperatura di intervento con un range stabilito dalle due resistenze disposte ai capi del trimmer che permette di avere nel cursore come massimo 2/3 e come minimo 1/3 della tensione di alimentazione stabilizzata (queste resistenze possono essere anche un valore minore o addirittura omesse: il range aumenterà ma si avrà una maggiore difficoltà nella taratura). Così costituito il termostato dovrebbe avere un range di intervento dai 10 ai 40°C, ma dipende dalle caratteristiche della sonda NTC. Ovviamente cambiando i valori delle resistenze si possono ottenere altre combinazioni di range: ad esempio eliminando le due resistenze ai capi del trimmer si otterrà una selezione della temperatura più difficoltosa ma si potranno ottenere range che permettono di rilevare anche temperature oltre i 40°C per sostituire i classici termostati a contatto dei tubi di riscaldamento (soluzione adottata dal sottoscritto).

    Successivamente è presente un amplificatore operazionale configurato come comparatore di tensione con isteresi: quando all'ingresso non invertente (+) la tensione del partitore con il trimmer è superiore alla tensione dell'ingresso invertente (-), data dal partitore con la sonda NTC, l'uscita dell'operazionale si attiverà (si avrà in uscita la tensione di alimentazione positiva). Quando invece la tensione dell'ingresso invertente, con la sonda NTC, supererà la tensione dell'ingresso non invertente, data dal trimmer, l'uscita dell'operazione si disattiverà (portando la sua uscita alla tensione di alimentazione negativa). Essendo la tensione invertente data dalla NTC (diminuisce all'aumentare della temperatura) l'operazionale si attiverà solo quando il calore (e quindi l'NTC) farà diminuire la tensione dell'ingresso invertente sotto al livello di tensione impostato con il trimmer all'ingresso non invertente. La resistenza da 220Kohm tra l'ingresso non invertente e l'uscita permette di aggiungere una isteresi al funzionamento, cioè la soglia di tensione cambia in attivazione e disattivazione per evitare che l'operazionale inizi a oscillare con valori in ingresso vicini alla soglia impostata con il trimmer.

    Il circuito procede all'uscita dell'operazionale con un diodo zener da 4,7V e un diodo classico 1N4148. Questi due componenti permettono di ottenere una soglia di tensione in grado di non far pervenire al transistor l'offset di tensione che ha in uscita l'operazionale. Questo poiché l'operazionale TL081 non è progettato per operare in alimentazione singola e questo tipo di configurazione ad alimentazione singola (con la tensione negativa a massa) provoca un offset di tensione in uscita che manterrebbe attivo il transistor successivo anche quando non è richiesto. Inoltre con questa configurazione se si omettono le resistenze ai capi del trimmer si dovrà, nella taratura, mantenere il trimmer con il cursore non al minimo (altrimenti si noterà una attivazione anomala del circuito). 

    Il circuito si conclude con un transistor che funziona come interruttore, esso provvede ad attivare e disattivare il relè, mentre il diodo ai capi della bobina del relè provvede a proteggere il transistor dalle extratensioni inverse provocate dalla bobina durante la disattivazione del relè. Un led, infine, indica l'attivazione del relè.

    COLLEGAMENTO SONDA NTC E CARICO

    La sonda NTC va collegata agli appositi terminali presenti nello schema e nel circuito stampato, non è necessario rispettare alcuna polarità. Per misurare la temperatura di un ambiente è necessario porre la sonda a contatto dell'aria presente nell'ambiente da misurare collegando la sonda direttamente nella scheda, mentre per misurare la temperatura di tubi, altre superfici o ambienti separati è necessario collegare la sonda ad un cavo schermato o "twistato" e isolare i terminali con delle guaine termorestringenti o con del nastro isolante. La sonda va posta a diretto contatto della superficie, facendo attenzione alla temperatura massima sopportabile dalla sonda NTC (solitamente fino a 125°C). Nel caso sia necessario inserire la sonda in un liquido è necessario inserire la sonda in un contenitore del diametro più stretto possibile, possibilmente di materiale ad elevata conduzione termica e ovviamente impermeabile.


     Al relè sono accessibili 3 terminali: comune, normalmente aperto e normalmente chiuso. Applicando un filo del carico tra il comune e uno dei terminali normalmente aperto o normalmente chiuso è possibile far si che il carico si attivi quando la temperatura è al di sotto della soglia impostata (contatto normalmente chiuso) o al di sopra della soglia impostata (contatto normalmente aperto). Attenzione che nel caso in cui il termostato sia non alimentato il contatto normalmente chiuso rimarrà chiuso. Essendo quelli del relè contatti puliti è possibile collegare come carico qualsiasi tipo di dispositivo alimentato in continua o alternata: nel caso usiate la tensione di rete provvedete a stagnare le piste che portano dai morsetti al relè ed a mettere tutto il circuito dentro una scatola isolante o anche di metallo purché sia collegata a terra. Ovviamente valutate le possibilità in relazione al relè disponibile (nel mio caso un finder mod. 40.52). La figura sotto illustra come fare i collegamenti.

    CIRCUITO STAMPATO

    Il circuito stampato visibile sotto è indicativo, per realizzare la scheda utilizzate i file allegati!


     

    Il circuito stampato è monofaccia ed è stato realizzato utilizzando il programma gratuito FidoCAD, nel file .zip scaricabile dal link sottostante potete trovare, oltre al documento di fidocad, il master in pdf pronto da utilizzare e la disposizione dei componenti.


    FILE TERMOSTATO CON RELE'

    ALCUNE IMMAGINI

         

    VERSIONE COMPATTA SENZA RELE'

    SCHEMA ELETTRICO

    Lo schema è sostanzialmente uguale al progetto con relè fatta eccezione per l'utilizzo di un transistor BC337 con una uscita di tipo "open collector" a cui è possibile collegare un relè esterno o un ingresso digitale di una scheda I/O come nel mio progetto MassaBus. Ai morsetti viene resa la possibilità di utilizzare come positivo la tensione di 12V stabilizzata del termostato, ma è possibile utilizzare anche una tensione esterna  per un carico avente un assorbimento massimo di 800mA e una tensione di funzionamento non superiore a 45V logicamente in continua, data da un alimentatore avente la massa in comune con il termostato.  La resistenza di base del BC337 da 5,6Kohm può andar bene per carichi che assorbono fino a circa 80mA, dopodichè è necessario ricalcolare tale resistenza per garantire la saturazione, considerando l'hFE del BC337.

    COLLEGAMENTO CARICO

    Il carico può essere collegato direttamente ai morsetti di uscita rispettando le caratteristiche del circuito, del transistor e avendo cura di inserire un diodo a polarità invertita ai capi del carico se esso è un carico di tipo induttivo (vedere ad esempio la versione con relè). Attenzione ad accertarsi che il carico non abbia la propria massa in comune con quella del termostato, altrimenti il transistor essendo bypassato non può intervenire nella disattivazione del carico.

     

    CIRCUITO STAMPATO

    La caratterisitca principale di questa scheda è la sua compattezza grazie ai componenti montati in verticale.

    Il circuito stampato è monofaccia ed è stato realizzato utilizzando il programma gratuito FidoCAD, nel file .zip scaricabile dal link sottostante potete trovare, oltre al documento di fidocad, il master in pdf pronto da utilizzare e la disposizione dei componenti.

    FILE TERMOSTATO TRANSISTOR

    ALCUNE IMMAGINI